FőoldalRendszerintegrátorAz urán útja a bányától a reprocesszálásig
2014. február 05., szerda ::

Az urán útja a bányától a reprocesszálásig

Az Energetikai Szakkollégium Jendrassik György emlékfélévének nyolcadik előadásának témája a nukleáris üzemanyagciklus volt, mely az uránérc bányászatával indul. A feldolgozás, átalakítás, dúsítás, a fűtőelemek elkészítése és felhasználása után még mindig sok feladat vár a felhasználókra

Osváth Szabolcs, az Országos Sugáregészségügyi és Sugárbiológiai Kutatóintézet radiokémikusa
Az előadást Osváth Szabolcs, az Országos Sugáregészségügyi és Sugárbiológiai Kutatóintézet radiokémikusa, korábban a BME NTI dozimetrikusa tartotta

Az üzemanyagciklus rövid bemutatása

A nukleáris üzemanyagciklus az uránérc bányászatával indul. A kitermelt ércet ezt követően fel kell dolgozni, hogy kinyerhessük belőle az uránt. Az uránt kémiai szempontból átalakítják (konverzió), ezt a dúsítás művelete követi. Ekkor már csak a fűtőelemek elkészítése van hátra, és az anyag készen áll az energetikai felhasználásra. A reaktorból kikerülve a kiégett fűtőelemeket pihentetik és azután reprocesszálhatók, de ma még túlnyomó részben tárolóba kerülnek.

1. ábra. A nukleáris üzemanyagciklus

Az előadó megemlítette, hogy mivel az urán nagy felezési idővel ugyan, de bomlik, ezért a Föld keletkezése óta a mennyisége folyamatosan csökken. Az általunk felhasználható 235-ös tömegszámú urán gyorsabban bomlik, mint a 238-as tömegszámú izotóp, tehát szerencsénk van, hogy a civilizációnk most használja fel ezt az energiát. Ha csak milliárd évekkel később fedeztük volna fel a maghasadást, lehet, hogy meg sem érte volna a dúsítás és a huszadik század történelme másképp alakult volna.

Az uránércek és bányászatuk

Az uránnak több mint 400 féle ércét tartják számon, ezek közül azonban a legdúsabbak urántartalma sem haladja meg a 3-4%-ot. Jellemzően azonban 1% urántartalom felett éri meg kitermelni ezeket, a nukleáris üzemanyag nagy energiasűrűsége miatt. Az uránkészletek eloszlása a Földön igen egyenlőtlen, a jelenleg gazdaságosan kitermelhető készletek több mint kétharmad részét három ország, Ausztrália, Kanada és Kazahsztán birtokolja.

2. ábra. A világ jelenleg ismert uránkészleteinek eloszlása

Ennek megfelelően a bányászat is igen egyenlőtlen, az előbb említett három ország felelős az kitermelés 60 százalékáért. A készletek csoportosítására mindenhol saját értékelő rendszert vezettek be a helyi vállalatok és hivatalok, ezért ezek nehezen összehasonlíthatók. Általánosságban elmondható, hogy a készleteket főként két szempont szerint értékelik. Az egyik a kitermelés költsége, a másik pedig a lelőhely „felkutatottsága", azaz hogy már teljesen feltárt-e, jelzett, esetleg csak feltételezett-e.
Alapvetően három módszer használatos az uránércek bányászatára. A kitermelés lehetséges külszíni fejtéssel, mélyművelésű bányával, esetleg az ún. „in situ leaching" (helyben kioldás) technológiával. A külszíni fejtéssel a felszínközeli készletek termelhetők ki gazdaságosan, ezek azonban mostanra kezdenek kimerülni, így ez a technológia kezd háttérbe szorulni. A mélyebben fekvő ércek bányászatához használatos a mélyművelés, melynek során egy függőleges aknából indítunk vízszintes tárnákat, ezekben folyik a bányászat. A kioldásos (in situ leaching) technológia alkalmazásának feltétele, hogy az urántartalmú kőzet erősen porózus legyen, alatta és fölötte pedig vízzáró réteg helyezkedjen el. Az eljárás lényege, hogy a porózus rétegbe kénsavat vagy nátrium-karbonát oldatot sajtolnak. Ezek anionjai figyelemreméltóan stabil komplexeket képeznek az oxidált uránnal, amely így vízoldhatóvá válik, és a rétegből való szivattyúzással kinyerhető. Az eljárást a 3. ábra szemlélteti.
3. ábra. Az "in situ leaching" technológia

Az eljárás azonban környezeti aggályokat vet fel, hiszen tömény vegyszereket juttatunk a talajba, amelyek hatása egyértelműen káros. A technológia ennek ellenére terjedőben van, mert rendkívül kényelmes és egyszerű, a kitermelésben való részesedése a külszíni fejtés csökkenésével párhuzamosan nő.

Az uránérc feldolgozása

4. ábra. A "sárga pogácsa"
Az érc kitermelését követően ki kell nyernünk belőle az urántartalmát. Hogy a kezelést megkönnyítsük, az érc először aprításra, őrlésre kerül, majd pörkölik. Belőle a már ismert kénsav (H2SO4)-oldattal, vagy nátrium-karbonát (Na2CO3)-oldattal nyerhető ki az urán, mert az uranil-ion a karbonát-ionnal, illetve a szulfátionnal vízoldható komplexet képez. A karbonátos technológiával jobb hatásfokot érhetünk el, de lassabb a reakció, a szulfátos eljárás gyorsabb, de rosszabb a hatékonysága. Ezt követően anioncserélőket alkalmazunk, hogy megtisztítsuk az urántartalmú oldatot, majd lúgosítással az uránt kicsaphatjuk az oldatból. A keletkező csapadék jellegzetes sárga színű, innen kapta a „sárga pogácsa" elnevezést. A sárga csapadékot ezután víztelenítjük, ekkor az anyag urántartalma már megközelítőleg 85-90%, így a hasznos anyag tartalma elég nagy ahhoz, hogy megérje elszállítani.
Az érc feldolgozása során nagy mennyiségű melléktermék, meddő keletkezik. Ebben rendkívül sokféle elem megtalálható, köztük az urán bomlási sorában megtalálható, szintén sugárzó izotópok. A kibányászott aktivitás 5/7-ed része a meddőhányóra kerül. Ez eddig a föld alatt volt, nem okozott problémát, de most kijuttattuk a felszínre, ráadásul bizonyos elemeit vízoldhatóvá tettük. Ennek megfelelően kezelése igen nagy körültekintést igényel, tehát fontos a felhagyott bányák meddőjének remediációja, rekultivációja. Erre jó példa a mecseki uránbányászat megszűntével az ottani rekultiváció, mely az eddigi legnagyobb környezetvédelmi beruházása hazánknak.

Konverzió

5. ábra. Az urán-tetrafluorid só alakjában
A sárga pogácsa anyaga jellemzően nátrium-diuranát Na2U2O7, vagy ammónium diuranát ((NH4)2U2O7). Ebből kell a dúsításhoz szükséges UF6-gázt előállítanunk. Az első lépés a salétromsavas oldás és az oldat tisztítása. Újbóli kicsapást követően hevítéssel urán-trioxidot nyerhetünk, ebből pedig redukcióval urán-dioxidot. Az urán-dioxid már hidrogén-fluoriddal is fluorozható, így urán-tetrafluoridot kapunk. Erre a vegyületre jellemző, hogy nem illékony, mint a hexaoxid, melyet további fluorozással, elemi fluor segítségével kapunk. A fluor igen agresszív, erősen oxidáló anyag, hiszen az elektronegativitása a legnagyobb az összes elem közül. Tárolása éppen ezért problémás, a helyszínen, elektrolízissel állítják elő. Azért vagyunk kénytelenek mégis alkalmazni, mert a dúsításhoz gáznemű vegyületre van szükség, melyben a másik (nem U) elemnek csak egy izotópja fordul elő (több jelentősen rontaná az elválasztás hatásfokát, mely már így is igen szerény). Ezeknek a paramétereknek a fluor felel meg.

Dúsítás

A dúsítás lényege, hogy az urán két jelenlévő izotópjának egymáshoz viszonyított arányát megváltoztassuk, és a 235-ös tömegszámúét megnöveljük. Mivel a két uránizotóp kémiai viselkedése teljesen egyezik, ezért az elválasztás csakis fizikai úton lehetséges. A tömegkülönbség nagyon csekély az atomok tömegéhez mérve, így az elválasztás hatékonysága is. Több lépést alkalmazva azonban a 235U atom aránya mértani sor szerint növekszik.

6. ábra. A gázdiffúziós eljárás
Manapság jellemzően két eljárás használatos az izotópdúsításhoz. Az első a gázdiffúziós, mely azon alapszik, hogy egy vékony membránon a kisebb tömegű, 235-ös izotópot tartalmazó UF6-molekula gyorsabban diffundál át, így a túloldalon a gázelegyünk „dúsabb" lesz. Jelenleg a technológia leáldozóban van, egyre kevésbé alkalmazzák, mert a másik technológiával gyorsabb, olcsóbb és nagyobb léptékű szeparáció érhető el.
7. ábra. A gázcentrifugás eljárás
Ez az eljárás a gázcentrifugás elválasztás, melynek lényege, hogy a nagyobb tömegű, 238-as tömegszámú uránatomot tartalmazó UF6-molekula tehetetlensége is nagyobb, így a gázt igen gyorsan pörgetve a centrifuga peremén a 238-as izotóp dúsul fel, míg középről kivezetve a gázt egy 235-ös izotópban dúsabb elegyet kapunk.
A dúsítási eljárás rendkívül energiaigényes, sorozatos hűtést és melegítést igényel, illetve a centrifugákat is meg kell hajtanunk. A centrifugák nagyon érzékenyek a rezgésekre, a magas fordulatszám miatt kis kilengés hatására is széteshetnek. A jövő mégis ezé a technológiáé, ma már csak ilyen telepek építése folyik.

Fűtőelemgyártás

A reaktorba számtalan szerkezeti anyag szükséges, a legfontosabb azonban maga az üzemanyag pasztilla, mely egyben az első mérnöki gátat is alkotja. A pasztilla anyagának rendkívüli termikus és sugárterhelést kell elviselnie, hiszen az üzemanyag hőmérséklete akár az 1500 °C-ot is meghaladhatja, és egy pasztilla éveket tölt a reaktorban.

8. ábra. A szilárd üzemanyagban megjelenő repedések
A kiégés még a kivételkor sem teljes, a pálcák cseréje azért szükséges, mert a hasadás során gáznemű hasadási termékek is keletkeznek, melyek szétfeszítik az üzemanyagmátrixot, és repedéseket hoznak létre az anyagban. Emiatt a pasztillák megdagadhatnak üzem közben, ez pedig pálcalyukadást okozhat, vagy a pálcaburkolat túl magas hőmérséklete esetén elindulhat a Zr és víz közötti reakció, amely hidrogént termel, és robbanáshoz vezethet.
Emiatt jelenleg is kutatások folynak más üzemanyagokkal, urán-karbid, fém urán és folyékony sóolvadék üzemanyag használata is felmerült. Az üzemanyagok elsöprő része azonban ma még UO2-bázisú. Ennek gyártási folyamata során az urán-oxidot porkohászati eljárással pasztillákká alakítják, majd ezeket szinterezik. A kész pasztillákat ezt követően pálcákba teszik, majd a pálcákat összerendezve kapjuk a kész üzemanyag-kazettát, amely lehet burkolattal ellátott, vagy burkolat nélküli.

A kiégett fűtőelemek kezelése

9. ábra. A kiégett kazetták pihentetése
A reaktorból kivett kazettákat kiégett üzemanyagnak tekintjük, holott a 235U tartalmuk még mindig meghaladja a 0,7%-nyi természetest (min 1% körüli, de lehet magasabb is). A pálcák a kivételt követően még mindig termelnek hőt, illetve erősen gamma-sugárzók. Emiatt kell víz alatt hűteni őket. A transzurán elemeknek (és a hasadási termékeknek) a tömege azonban kicsiny, így eltávolításukkal elérhető lenne, hogy újrahasznosítsuk a használható anyagokat (U-235, U-238, keletkezett Pu-239).
Emiatt vetődött fel a reprocesszálás ötlete, melynek során elválaszthatjuk a sugárzó anyagokat az urántól és a plutóniumtól. A proliferációs problémák miatt az USA elvetette az eljárás alkalmazását, veszélyesnek ítélték, hogy a folyamat részeként tiszta Pu is keletkezik, mely rossz kezekbe jutva nukleáris fegyverként alkalmazható. Emiatt úgy döntöttek, hogy biztonságosabb a hulladékokat lerakni, így az nem használható fel fegyverként. Franciaország azonban úgy döntött, hogy alkalmazza a technológiát, ma is működik az országban reprocesszáló mű.

Reprocesszálás

A jelenleg alkalmazott eljárás neve PUREX. Az eljárás kémiai reakciókon és extrakción alapul. Az üzemanyagot salétromsavban feloldják, ezzel az urán és a plutónium is a vizes fázisba kerül. Ezt a vizes fázist érintkezésbe hozzák olyan szerves oldószerrel, amely tributil-foszfátot (TBP) tartalmaz. Ez az anyag a Pu és az U kationjaival komplexet képez, és amfipatikus tulajdonsága folytán azokat apoláris oldószerben oldódóvá teszi (a víz poláris), így extrakcióval ezek a komplexek átvihetők a vízzel nem elegyedő szerves oldószerbe, a többi anyag pedig a vizes fázisban marad.

10. ábra. A PUREX eljárás sematikus rajza

Az előadó megjegyezte, hogy a két elemen kívül kis mértékben a Np is átjut a szerves fázisba, amely viszont reaktorméreg, így ugyanazon üzemanyag többszöri reprocesszálása sajnos nem célszerű. A szerves oldószert ezután egy tiszta vizes fázissal hozzák érintkezésbe, és a vizes fázisba az egyensúlyi reakció révén átkerülő Pu-atomokat szelektíven, vas(II)-ionok segítségével redukáljuk, ezzel folyamatosan elvonva a reakció termékét. Ez eltolja az egyensúlyt a Pu további vizes oldódása felé, elegendő idő elteltével az összes Pu a vizes fázisba kerül. Egy következő lépéssel pedig az U-tartalmat nyerhetjük ki hasonló technikával.
A hasadási termékeket a vizes oldatból sóként kicsaphatjuk, és üvegbe foglalva lényegében ártalmatlaníthatjuk őket, alkalmasak a lerakásra. A PUREX eljárás során az üzemanyagból az U és a Pu 99,9%-át visszanyerhetjük, de rengeteg folyékony és gáznemű radioaktív hulladék keletkezik, illetve további kezelést igényelnek az üvegbe foglalt hasadási termékek.

A nukleáris ipar jövőbeni tervei között szerepel a mostani nyílttal szemben a zárt üzemanyagciklus megvalósítása. Ehhez új reaktortípusok kifejlesztése is szükséges, ezek a projektek jelenleg is zajlanak, széles nemzetközi összefogással. Várhatóan a század közepére elindulhatnak ezek a negyedik generációs energiatermelő erőművek. A zárt üzemanyagciklussal elérhető lenne, hogy az egyes anyagok sokkal nagyobb mértékben hasznosításra kerüljenek, még a 238U is. Ezáltal lényegesen kevesebb hulladék keletkezne, hiszen a szennyezőket jóval koncentráltabb formában nyernénk ki, így a technológia fenntarthatóságával kapcsolatos aggodalmakat el lehetne oszlatni.

Az Energetikai Szakkollégium honlapja

Tudomány / Alapkutatás

tudomany

CAD/CAM

cad

Járműelektronika

jarmuelektronika

Rendezvények / Kiállítások

Mostanában nincsenek események
Nincs megjeleníthető esemény