FőoldalKonstruktőrÚjabb lépés a hajlékony IC-k felé
2016. április 15., péntek ::

Újabb lépés a hajlékony IC-k felé

Az Ars Technica beszámolója szerint oldott, kolloid nanokristályokból készítettek FET tranzisztorokra épülő áramköröket kutatók

Már nagyobb területű hajlékony áramkörök is előállíthatóak egy most publikált folyamattal, mely nanokristályokból álló tranzisztorokra épít.

Korábban a nanokristályokat csupán egymagukban alkalmazták különféle áramkörökben, ugyanis a vákuumos gyártási folyamat lassú és költséges volt. Ezen felül több, különféle nanokristály egyidejű integrálása további kihívásokat is jelentett, ugyanis ilyenkor a kristályok felületi kémiája könnyen „összezavarodott”. Mindez gátat jelentett a nagyobb teljesítményű áramkörök létrehozásának, melyek komplex mintázatot és rétegzést igényelnek, megfelelő strukturális stabilitás, kémiai kompatibilitás, illetve a különféle anyagok közötti megfelelő kooperáció mellett. A most publikált eredmények alapján sikerült áttörést elérni, a nanokristályokból épített tranzisztorok egy sztenderd N-típusú félvezető karakterisztikáját mutatták. Mindez megnyithatja az utat a nagyobb területű, flexibilis, de alacsony gyártási költségű, egyszerűbb áramkörök tömeggyártása előtt, amivel új piacokat vehetnének célba a gyártók.

hajlekony ic 1

A flexibilis áramkör előállítását egy relatíve egyszerű folyamat keretein belül érték el a szakemberek, az egyes komponenseket speciális folyadékba keverték. Az újfajta eljárás általánosságban véve olcsó és kényelmes, ráadásul viszonylag nagy területeket lehet egyszerre megmunkálni segítségével.

A FET-ek alternatív előállítását célzó projekthez ezüst, alumínium-oxid, illetve kadmium-szelenid nanokristályokat alkalmaztak. A megoldást a több részes, úgynevezett solution-processing jelentette, amivel különféle nanokristályokat hoztak létre egy flexibilis polimer szubsztrátumon. Első lépésként a kapuelektródákat alakították ki, ezüst nanokristályokkal egy mintázatot rajzoltak forgótárcsás (spin coating) technikával. Ezután az ezüst bevonat kémia kezelése következett, amire a rétegzés megalapozása miatt volt szükség. A következő lépcsőben eltávolították a mintázatot, amivel végeredményként 80 (±10) nanométeres ezüst nanokristály kapuelektródákat kaptak.

Ezután a kapuszigetelő réteg létrehozása következett. Ehhez kvázi nulladik lépcsőként a szubtrátumot kezelték elektromosan töltött polimerekkel, így változtatva annak felületén. Mindez a későbbi rétegzés miatt kritikus fontosságú volt, ugyanis a módszernek köszönhetően megelőzték a rétegek későbbi szétválását. A következő fázisban a kapuszigetelőket növesztették rétegről-rétegre, ellenkező töltésű polisztirol-szulfonát és alumínium-oxid nanokristályok váltogatásával. Az így létrejött réteg vastagsága 60 (±5) nanométeres lett.

A félvezető csatornák létrehozásához ismét a forgótárcsás technikához nyúltak a mérnökök, a kadmium-szelenid nanokristályokhoz kémiai úton tiocianátot adtak, amit töltéssel rendelkező polimerekkel kevertek. Utóbbi lépéssel elejébe mentek a rétegek elválásának, amit az ezt követően alkalmazott különféle kémiai kezelések idéznének elő.

A source és a drain elektródák létrehozásához ezüst és indium nanokristályokat raktak egy fénnyel degradálható anyagra, amit ammónium-tiocianát kezelés követett. A folyamat legvégén 250 °C-os, nitrogénnel töltött térben hőkezelték 10 percen keresztül az áramkört, ami amellett, hogy megvastagította a kadmium-szelenid filmet, nagyban segítette az indium megfelelő diffúzióját is. A folyamatok legvégén egy enyhén érdes felületű, de egyenletes, teljesen hajlékony, törhetetlen filmréteg jött létre. A vizsgálatok során az alumínium-oxid szigetelőréteg simának és folyamatosnak bizonyult, jól kirajzolt elektródákkal.

A mérések szerint a szigetelőréteg dielektromos állandója a polimer miatt magasabb a sztenderd alumínium-oxid rétegek értékénél, ami hatékonyabb töltés-felhalmozódást eredményez alacsony üzemi feszültségnél. A hőkezelést követően az alumínium-oxid nanokristály réteg alacsony szivárgási áramot biztosított.

Forrás

Tudomány / Alapkutatás

tudomany

CAD/CAM

cad

Járműelektronika

jarmuelektronika

Rendezvények / Kiállítások

Mostanában nincsenek események
Nincs megjeleníthető esemény